Predicting drug combination side effects based on a metapath-based heterogeneous graph neural network.

阅读:16
作者:Tian Leixia, Wang Qi, Zhou Zhiheng, Liu Xiya, Zhang Ming, Yan Guiying
In recent years, combined drug screening has played a very important role in modern drug discovery. Generally, synergistic drug combinations are crucial in treatment for many diseases. However, the toxic side effects of drug combinations are probably increased with the increase of drugs numbers, so the accurate prediction of toxic side effects of drug combinations is equally important. In this paper, we built a Metapath-based Aggregated Embedding Model on Single Drug-Side Effect Heterogeneous Information Network (MAEM-SSHIN), which extracts feature from a heterogeneous information network of single drug side effects, and a Graph Convolutional Network on Combinatorial drugs and Side effect Heterogeneous Information Network (GCN-CSHIN), which transforms the complex task of predicting multiple side effects between drug pairs into the more manageable prediction of relationships between combinatorial drugs and individual side effects. MAEM-SSHIN and GCN-CSHIN provided a united novel framework for predicting potential side effects in combinatorial drug therapies. This integration enhances prediction accuracy, efficiency, and scalability. Our experimental results demonstrate that this combined framework outperforms existing methodologies in predicting side effects, and marks a significant advancement in pharmaceutical research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。