Predicting drug combination side effects based on a metapath-based heterogeneous graph neural network.

阅读:5
作者:Tian Leixia, Wang Qi, Zhou Zhiheng, Liu Xiya, Zhang Ming, Yan Guiying
In recent years, combined drug screening has played a very important role in modern drug discovery. Generally, synergistic drug combinations are crucial in treatment for many diseases. However, the toxic side effects of drug combinations are probably increased with the increase of drugs numbers, so the accurate prediction of toxic side effects of drug combinations is equally important. In this paper, we built a Metapath-based Aggregated Embedding Model on Single Drug-Side Effect Heterogeneous Information Network (MAEM-SSHIN), which extracts feature from a heterogeneous information network of single drug side effects, and a Graph Convolutional Network on Combinatorial drugs and Side effect Heterogeneous Information Network (GCN-CSHIN), which transforms the complex task of predicting multiple side effects between drug pairs into the more manageable prediction of relationships between combinatorial drugs and individual side effects. MAEM-SSHIN and GCN-CSHIN provided a united novel framework for predicting potential side effects in combinatorial drug therapies. This integration enhances prediction accuracy, efficiency, and scalability. Our experimental results demonstrate that this combined framework outperforms existing methodologies in predicting side effects, and marks a significant advancement in pharmaceutical research.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。