Toward Complete Optical Coupling to Confined Surface Polaritons.

阅读:18
作者:Abdullah Saad, Dias Eduardo J C, Krpenský Jan, Mkhitaryan Vahagn, García de Abajo F Javier
Optical coupling between propagating light and confined surface polaritons plays a pivotal role in the practical design of nanophotonic devices. However, the coupling efficiency decreases dramatically with the degree of mode confinement due to the mismatch that exists between the light and polariton wavelengths, and despite the intense efforts made to explore different mechanisms proposed to circumvent this problem, the realization of a flexible scheme to efficiently couple light to polaritons remains a challenge. Here, we experimentally demonstrate an efficient coupling of light to surface-plasmon polaritons assisted by engineered dipolar scatterers placed at an optimum distance from the surface. Specifically, we fabricate gold disks separated by a silica spacer from a planar gold surface and seek to achieve perfect coupling conditions by tuning the spacer thickness for a given scatterer geometry that resonates at a designated optical frequency. We measure a maximum light-to-plasmon coupling cross section of the order of the square of the light wavelength at an optimum distance that results from the interplay between a large particle-surface interaction and a small degree of surface-driven particle-dipole quenching, both of which are favored at small separations. Our experiments, in agreement with both analytical theory and electromagnetic simulations, support the use of optimally placed engineered scatterers as a disruptive approach to solving the long-standing problem of in/out-coupling in nanophotonics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。