Optical coupling between propagating light and confined surface polaritons plays a pivotal role in the practical design of nanophotonic devices. However, the coupling efficiency decreases dramatically with the degree of mode confinement due to the mismatch that exists between the light and polariton wavelengths, and despite the intense efforts made to explore different mechanisms proposed to circumvent this problem, the realization of a flexible scheme to efficiently couple light to polaritons remains a challenge. Here, we experimentally demonstrate an efficient coupling of light to surface-plasmon polaritons assisted by engineered dipolar scatterers placed at an optimum distance from the surface. Specifically, we fabricate gold disks separated by a silica spacer from a planar gold surface and seek to achieve perfect coupling conditions by tuning the spacer thickness for a given scatterer geometry that resonates at a designated optical frequency. We measure a maximum light-to-plasmon coupling cross section of the order of the square of the light wavelength at an optimum distance that results from the interplay between a large particle-surface interaction and a small degree of surface-driven particle-dipole quenching, both of which are favored at small separations. Our experiments, in agreement with both analytical theory and electromagnetic simulations, support the use of optimally placed engineered scatterers as a disruptive approach to solving the long-standing problem of in/out-coupling in nanophotonics.
Toward Complete Optical Coupling to Confined Surface Polaritons.
阅读:6
作者:Abdullah Saad, Dias Eduardo J C, Krpenský Jan, Mkhitaryan Vahagn, GarcÃa de Abajo F Javier
| 期刊: | ACS Photonics | 影响因子: | 6.700 |
| 时间: | 2024 | 起止号: | 2024 Feb 29; 11(6):2183-2193 |
| doi: | 10.1021/acsphotonics.3c01742 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
