Axon branching requires interactions between dynamic microtubules and actin filaments.

阅读:3
作者:Dent E W, Kalil K
Cortical neurons innervate many of their targets by collateral axon branching, which requires local reorganization of the cytoskeleton. We coinjected cortical neurons with fluorescently labeled tubulin and phalloidin and used fluorescence time-lapse imaging to analyze interactions between microtubules and actin filaments (F-actin) in cortical growth cones and axons undergoing branching. In growth cones and at axon branch points, splaying of looped or bundled microtubules is accompanied by focal accumulation of F-actin. Dynamic microtubules colocalize with F-actin in transition regions of growth cones and at axon branch points. In contrast, F-actin is excluded from the central region of the growth cone and the axon shaft, which contains stable microtubules. Interactions between dynamic microtubules and dynamic actin filaments involve their coordinated polymerization and depolymerization. Application of drugs that attenuate either microtubule or F-actin dynamics also inhibits polymerization of the other cytoskeletal element. Importantly, inhibition of microtubule or F-actin dynamics prevents axon branching but not axon elongation. However, these treatments do cause undirected axon outgrowth. These results suggest that interactions between dynamic microtubules and actin filaments are required for axon branching and directed axon outgrowth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。