Crosslinked cytoskeletal filament networks provide cells with a mechanism to regulate cellular mechanics and force transmission. An example in the microtubule cytoskeleton is mitotic spindle elongation. The three-dimensional geometry of these networks, including the overlap length and lateral microtubule spacing, likely controls how forces can be regulated, but how these parameters evolve during filament sliding is unknown. Recent evidence suggests that the crosslinker PRC1 can resist microtubule sliding by two distinct modes: a braking mode and a less resistive coasting mode. To explore how molecular-scale mechanisms influence network geometry in this system, we developed a computational model of sliding microtubule pairs crosslinked by PRC1 that reproduces the experimentally observed braking and coasting modes. Surprisingly, we found that the braking mode was associated with a substantially smaller lateral separation between the crosslinked microtubules than the coasting mode. This closer separation aligns the PRC1-mediated forces against sliding, increasing the resistive PRC1 force and dramatically reducing sliding speed. The model also finds an emergent similar average sliding speed due to PRC1 resistance, because higher initial sliding speed favors the transition to braking. Together, our results highlight the importance of the three-dimensional geometric relationships between crosslinkers and microtubules.
PRC1 resists microtubule sliding in two distinct resistive modes due to variations in the separation between overlapping microtubules.
阅读:12
作者:Steckhahn Daniel, Fiorenza Shane A, Tai Ellinor, Forth Scott, Kramer Peter R, Betterton Meredith
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 18 |
| doi: | 10.1101/2024.12.31.630898 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
