Candida auris is an emergent fungal pathogen of significant interest for molecular research because of its unique nosocomial persistence, high stress tolerance and common multidrug resistance. To investigate the molecular mechanisms of these or other phenotypes, a handful of CRISPR-Cas9 based allele editing tools have been optimized for C. auris. Nonetheless, allele editing in this species remains a significant challenge, and different systems have different advantages and disadvantages. In this work, we compare four systems to introduce the genetic elements necessary for the production of Cas9 and the guide RNA molecule in the genome of C. auris, replacing the ENO1, LEU2 and HIS1 loci respectively, while the fourth system makes use of an episomal plasmid. We observed that the editing efficiency of all four systems was significantly different and strain dependent. Alarmingly, we did not detect correct integration of linear CRISPR cassette constructs in integration-based systems, in over 4,900 screened transformants. Still, all transformants, whether correctly edited or not, grew on selective nourseothricin media, suggesting common random ectopic integration of the CRISPR cassette. Although the plasmid-based system showed a low transformation success compared to the other systems, it has the highest editing efficiency with 41.9% correct transformants on average. In an attempt to improve editing efficiencies of integration-based systems by silencing the non-homologous end joining (NHEJ) DNA repair pathway, we deleted two main NHEJ factors, KU70 and LIG4. However, no improved editing or targeting efficiencies were detected in ku70Î, lig4Î, or ku70Î/lig4Î backgrounds. Our research highlights important challenges in precise genome editing of C. auris and sheds light on the advantages and limitations of several methods with the aim to guide scientists in selecting the most appropriate tool for molecular work in this enigmatic fungal pathogen.
A comparative evaluation of CRISPR-Cas9 allele editing systems in Candida auris: challenging research in a challenging bug.
阅读:10
作者:Sofras Dimitrios, Carolus Hans, SubotiÄ Ana, Romero Celia Lobo, Ennis Craig L, Hernday Aaron D, Nobile Clarissa J, Rybak Jeffrey M, Van Dijck Patrick
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jan 11 |
| doi: | 10.1101/2025.01.09.632232 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
