MODELING TRAJECTORIES USING FUNCTIONAL LINEAR DIFFERENTIAL EQUATIONS.

阅读:12
作者:Wrobel Julia, Sauerbrei Britton, Kirk Eric A, Guo Jian-Zhong, Hantman Adam, Goldsmith Jeff
We are motivated by a study that seeks to better understand the dynamic relationship between muscle activation and paw position during locomotion. For each gait cycle in this experiment, activation in the biceps and triceps is measured continuously and in parallel with paw position as a mouse trotted on a treadmill. We propose an innovative general regression method that draws from both ordinary differential equations and functional data analysis to model the relationship between these functional inputs and responses as a dynamical system that evolves over time. Specifically, our model addresses gaps in both literatures and borrows strength across curves estimating ODE parameters across all curves simultaneously rather than separately modeling each functional observation. Our approach compares favorably to related functional data methods in simulations and in cross-validated predictive accuracy of paw position in the gait data. In the analysis of the gait cycles, we find that paw speed and position are dynamically influenced by inputs from the biceps and triceps muscles and that the effect of muscle activation persists beyond the activation itself.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。