Cancer is characterized by uncontrolled cell growth and spreading throughout the body. This study employed computational approaches to investigate 18 naturally derived anticancer piscidinol A derivatives (1-18) as potential therapeutics. By examining their interactions with 15 essential target proteins (HIF-1α, RanGAP, FOXM1, PARP2, HER2, ERα, NGF, FAS, GRP78, PRDX2, SCF complex, EGFR, Bcl-xL, ERG, and HSP70) and comparing them with established drugs such as camptothecin, docetaxel, etoposide, irinotecan, paclitaxel, and teniposide, compound 10 emerged as noteworthy. In molecular dynamics simulations, the protein with the strongest binding to the crucial 1A52 protein exceeded druglikeness criteria and displayed extraordinary stability within the enzyme's pocket over varied temperatures (300-320 K). Additionally, density functional theory was used to calculate dipole moments and molecular orbital characteristics, as well as analyze the thermodynamic stability of the putative anticancer derivatives. This finding reveals a well-defined, potentially therapeutic relationship supported by theoretical analysis, which is in good agreement with subsequent assessments of their potential in vitro cytotoxic effects of piscidinol A derivatives (6-18) against various cancer cell lines. Future in vivo and clinical studies are required to validate these findings further. Compound 10 thus emerges as an intriguing contender in the fight against cancer.
Evaluating the Anticancer Properties of Novel Piscidinol A Derivatives: Insights from DFT, Molecular Docking, and Molecular Dynamics Studies.
阅读:3
作者:Suha Humaera Noor, Tasnim Syed Ahmed, Rahman Shofiur, Alodhayb Abdullah, Albrithen Hamad, Poirier Raymond A, Uddin Kabir M
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2024 | 起止号: | 2024 Nov 29; 9(50):49639-49661 |
| doi: | 10.1021/acsomega.4c07808 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
