Sensor-Driven Surrogate Modeling and Control of Nonlinear Dynamical Systems Using FAE-CAE-LSTM and Deep Reinforcement Learning.

阅读:4
作者:Kherad Mahdi, Moayyedi Mohammad Kazem, Fotouhi-Ghazvini Faranak, Vahabi Maryam, Fotouhi Hossein
In cyber-physical systems governed by nonlinear partial differential equations (PDEs), real-time control is often limited by sparse sensor data and high-dimensional system dynamics. Deep reinforcement learning (DRL) has shown promise for controlling such systems, but training DRL agents directly on full-order simulations is computationally intensive. This paper presents a sensor-driven, non-intrusive reduced-order modeling (NIROM) framework called FAE-CAE-LSTM, which combines convolutional and fully connected autoencoders with a long short-term memory (LSTM) network. The model compresses high-dimensional states into a latent space and captures their temporal evolution. A DRL agent is trained entirely in this reduced space, interacting with the surrogate built from sensor-like spatiotemporal measurements, such as pressure and velocity fields. A CNN-MLP reward estimator provides data-driven feedback without requiring access to governing equations. The method is tested on benchmark systems including Burgers' equation, the Kuramoto-Sivashinsky equation, and flow past a circular cylinder; accuracy is further validated on flow past a square cylinder. Experimental results show that the proposed approach achieves accurate reconstruction, robust control, and significant computational speedup over traditional simulation-based training. These findings confirm the effectiveness of the FAE-CAE-LSTM surrogate in enabling real-time, sensor-informed, scalable DRL-based control of nonlinear dynamical systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。