ERRgamma mediates tamoxifen resistance in novel models of invasive lobular breast cancer.

阅读:4
作者:Riggins Rebecca B, Lan Jennifer P-J, Zhu Yuelin, Klimach Uwe, Zwart Alan, Cavalli Luciane R, Haddad Bassem R, Chen Li, Gong Ting, Xuan Jianhua, Ethier Stephen P, Clarke Robert
One-third of all estrogen receptor (ER)-positive breast tumors treated with endocrine therapy fail to respond, and the remainder is likely to relapse in the future. Almost all data on endocrine resistance has been obtained in models of invasive ductal carcinoma (IDC). However, invasive lobular carcinomas (ILC) comprise up to 15% of newly diagnosed invasive breast cancers each year and, whereas the incidence of IDC has remained relatively constant during the last 20 years, the prevalence of ILC continues to increase among postmenopausal women. We report a new model of Tamoxifen (TAM)-resistant invasive lobular breast carcinoma cells that provides novel insights into the molecular mechanisms of endocrine resistance. SUM44 cells express ER and are sensitive to the growth inhibitory effects of antiestrogens. Selection for resistance to 4-hydroxytamoxifen led to the development of the SUM44/LCCTam cell line, which exhibits decreased expression of ERalpha and increased expression of the estrogen-related receptor gamma (ERRgamma). Knockdown of ERRgamma in SUM44/LCCTam cells by siRNA restores TAM sensitivity, and overexpression of ERRgamma blocks the growth-inhibitory effects of TAM in SUM44 and MDA-MB-134 VI lobular breast cancer cells. ERRgamma-driven transcription is also increased in SUM44/LCCTam, and inhibition of activator protein 1 (AP1) can restore or enhance TAM sensitivity. These data support a role for ERRgamma/AP1 signaling in the development of TAM resistance and suggest that expression of ERRgamma may be a marker of poor TAM response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。