Radiative cooling in New York/New Jersey metropolitan areas by wildfire particulate matter emitted from the Canadian wildfires of 2023.

阅读:9
作者:Kelesidis Georgios A, Moularas Constantinos, Parhizkar Hooman, Calderon Leonardo, Tsiodra Irini, Mihalopoulos Nikolaos, Kavouras Ilias, Korras-Carraca Marios-Bruno, Hatzianastassiou Nikolaos, Georgopoulos Panos G, Cedeño Laurent José G, Demokritou Philip
Wildfire particulate matter from Canadian forest fires significantly impacted the air quality in the northeastern United States during the summer of 2023. Here, we used real-time and time-integrated instrumentation to characterize the physicochemical properties and radiative effects of wildfire particulate matter reaching the metropolitan areas of New Jersey/ New York during this extreme incident. The radiative forcing of -352.4 W/m(2) derived here based on the measured optical properties of wildfire particulate matter explains, to some extent, the ground level temperature reduction of about 3 °C observed in New Jersey/ New York City during this incident. Such negative radiative forcing in densely populated megacities may limit natural ventilation, increase the residence time of wildfire particulate matter and background air pollutants, exacerbating public health risks. This study highlights the importance of radiative effects from wildfire particulate matter in densely populated areas and their potential implications for climate, air quality and public health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。