To address the increasingly complex demands of noise control, this study investigated the integration of a micro-perforated nanofiber membrane (MPNM) with nonwoven fiber felt (NFF), exploiting their synergistic effects to achieve efficient low-frequency broadband sound absorption. Through theoretical analysis, numerical simulations, and experimental validation, the relationship between the sound absorption performance of the composite structure and factors such as the lamination sequence, bonding area, perforation parameters, thickness of the MPNM, and thickness of the NFF were elucidated. These findings provided new insights for the design of high-performance, tunable, sound-absorbing materials. The results demonstrated that the MPNM-NFF effectively combined two distinct sound absorption mechanisms, thereby expanding the effective absorption bandwidth, with particularly enhanced low-frequency sound absorption. Moreover, through algorithmic optimization of the structural parameters, targeted absorption of noise across different frequency bands was achieved, with the optimal average sound absorption coefficients reaching 0.70 in the low-frequency range, 0.91 in the mid-frequency range, and 0.82 in the full-frequency range. This research offered both theoretical foundations and practical guidance for the development of composite materials with high efficiency and broadband sound absorption characteristics, paving the way for innovative applications in noise control materials.
Simulation, Measurement, and Optimization of Sound Absorption in Nanofiber Membrane Composite with a Nonwoven Material.
阅读:5
作者:Shao Xiaofei, Yan Xiong
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 25; 17(7):874 |
| doi: | 10.3390/polym17070874 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
