This study proposes a Driving style-Tri Channel Trajectory Model (DS-TCTM) to enhance vehicle trajectory prediction accuracy and driving safety. The framework operates through three rigorously designed stages: (1)Data preprocessing involving kinematics feature extraction, (2)Driving style recognition utilizing acceleration variation rate and average time headway combined with K-Means++ traffic density clustering and K-neighbor Gaussian mixture model (K-GMM) analysis to classify driving behaviors into conservative, moderate, and radical categories, and (3)Personalized trajectory prediction employing a multi-level neural architecture with dedicated sub-networks for distinct driving styles. Experimental evaluations demonstrate DS-TCTM's superior performance across multiple dimensions. The model achieves a mean RMSE of 4.46 and NLL of 3.89 across varying prediction horizons, with 35.8% error reduction attained after 100 hyperparameter optimization iterations. Comparative analysis with baseline models (LSTM, Social-LSTM, Social-Velocity-LSTM, Convolutional-Social-LSTM) reveals particularly enhanced accuracy in long-term predictions. These results confirm DS-TCTM's effectiveness in capturing driving style impacts on trajectory patterns, providing reliable prediction enhancements for vehicle safety systems. This methodology advances personalized trajectory modeling with practical intelligent transportation applications.
Personalized trajectory inference framework integrating driving behavior recognition and temporal dependency learning.
阅读:3
作者:Yang Jinhao, Cao Junwen, Fang Mingyu
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 10; 20(7):e0326937 |
| doi: | 10.1371/journal.pone.0326937 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
