In general, a single thresholding technique is developed or enhanced to separate foreground objects from background for a domain of images. This idea may not generate satisfactory results for all images in a dataset, since different images may require different types of thresholding methods for proper binarization or segmentation. To overcome this limitation, in this study, we propose a novel approach called "super-thresholding" that utilizes a supervised classifier to decide an appropriate thresholding method for a specific image. This method provides a generic framework that allows selection of the best thresholding method among different thresholding techniques that are beneficial for the problem domain. A classifier model is built using features extracted priori from the original image only or posteriori by analyzing the outputs of thresholding methods and the original image. This model is applied to identify the thresholding method for new images of the domain. We performed our method on protein crystallization images, and then we compared our results with six thresholding techniques. Numerical results are provided using four different correctness measurements. Super-thresholding outperforms the best single thresholding method around 10 percent, and it gives the best performance for protein crystallization dataset in our experiments.
Super-Thresholding: Supervised Thresholding of Protein Crystal Images.
阅读:4
作者:Dinc Imren, Dinc Semih, Sigdel Madhav, Sigdel Madhu S, Pusey Marc L, Aygun Ramazan S
| 期刊: | Ieee-Acm Transactions on Computational Biology and Bioinformatics | 影响因子: | 3.400 |
| 时间: | 2017 | 起止号: | 2017 Jul-Aug;14(4):986-998 |
| doi: | 10.1109/TCBB.2016.2542811 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
