Proton stopping measurements at low velocity in warm dense carbon.

阅读:2
作者:Malko S, Cayzac W, Ospina-Bohórquez V, Bhutwala K, Bailly-Grandvaux M, McGuffey C, Fedosejevs R, Vaisseau X, Tauschwitz An, Apiñaniz J I, De Luis Blanco D, Gatti G, Huault M, Hernandez J A Perez, Hu S X, White A J, Collins L A, Nichols K, Neumayer P, Faussurier G, Vorberger J, Prestopino G, Verona C, Santos J J, Batani D, Beg F N, Roso L, Volpe L
Ion stopping in warm dense matter is a process of fundamental importance for the understanding of the properties of dense plasmas, the realization and the interpretation of experiments involving ion-beam-heated warm dense matter samples, and for inertial confinement fusion research. The theoretical description of the ion stopping power in warm dense matter is difficult notably due to electron coupling and degeneracy, and measurements are still largely missing. In particular, the low-velocity stopping range, that features the largest modelling uncertainties, remains virtually unexplored. Here, we report proton energy-loss measurements in warm dense plasma at unprecedented low projectile velocities. Our energy-loss data, combined with a precise target characterization based on plasma-emission measurements using two independent spectroscopy diagnostics, demonstrate a significant deviation of the stopping power from classical models in this regime. In particular, we show that our results are in closest agreement with recent first-principles simulations based on time-dependent density functional theory.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。