Directed Evolution of Fluorescent Proteins in Bacteria

细菌中荧光蛋白的定向进化

阅读:6
作者:Sara Mattson, Geraldine N Tran, Erik A Rodriguez

Abstract

Directed evolution has revolutionized the way scientists create new biomolecules not found in nature. Error-prone polymerase chain reaction (PCR) introduces random mutations and was used to evolve jellyfish and coral fluorescent proteins in bacteria. We describe a novel method for the directed evolution of a far-red fluorescent protein in E. coli. The new method used genes to produce fluorophores inside E. coli and allowed changing the native fluorophore, phycocyanobilin, for a second small-molecule fluorophore, biliverdin. The directed evolution blueshifted the fluorescence, which enhanced the quantum yield to produce a brighter fluorescent protein. Finally, the evolution selected fluorescent proteins that expressed in large quantities in E. coli. The evolved fluorescent protein was named the small ultra-red fluorescent protein (smURFP) and was biophysically as bright as the enhanced green fluorescent protein (EGFP). This chapter describes the materials and methods used to evolve a far-red fluorescent protein in bacteria. While the focus is a fluorescent protein, the protocol is adaptable for the evolution of other biomolecules in bacteria when using a proper selection strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。