CSF proteomics of secondary phase spinal cord injury in human subjects: perturbed molecular pathways post injury

人类脊髓损伤二期脑脊液蛋白质组学:损伤后分子通路紊乱

阅读:6
作者:Mohor Biplab Sengupta, Mahashweta Basu, Sourav Iswarari, Kiran Kumar Mukhopadhyay, Krishna Pada Sardar, Biplab Acharyya, Pradeep K Mohanty, Debashis Mukhopadhyay

Abstract

Recovery of sensory and motor functions following traumatic spinal cord injury (SCI) is dependent on injury severity. Here we identified 49 proteins from cerebrospinal fluid (CSF) of SCI patients, eight of which were differentially abundant among two severity groups of SCI. It was observed that the abundance profiles of these proteins change over a time period of days to months post SCI. Statistical analysis revealed that these proteins take part in several molecular pathways including DNA repair, protein phosphorylation, tRNA transcription, iron transport, mRNA metabolism, immune response and lipid and ATP catabolism. These pathways reflect a set of mechanisms that the system may adopt to cope up with the assault depending on the injury severity, thus leading to observed physiological responses. Apart from putting forward a picture of the molecular scenario at the injury site in a human study, this finding further delineates consequent pathways and molecules that may be altered by external intervention to restrict neural degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。