Encoding of movement direction in different frequency ranges of motor cortical local field potentials.

阅读:8
作者:Rickert Jörn, Oliveira Simone Cardoso de, Vaadia Eilon, Aertsen Ad, Rotter Stefan, Mehring Carsten
Recent studies showed that the low-frequency component of local field potentials (LFPs) in monkey motor cortex carries information about parameters of voluntary arm movements. Here, we studied how different signal components of the LFP in the time and frequency domains are modulated during center-out arm movements. Analysis of LFPs in the time domain showed that the amplitude of a slow complex waveform beginning shortly before the onset of arm movement is modulated with the direction of the movement. Examining LFPs in the frequency domain, we found that direction-dependent modulations occur in three frequency ranges, which typically increased their amplitudes before and during movement execution: < or =4, 6-13, and 63-200 Hz. Cosine-like tuning was prominent in all signal components analyzed. In contrast, activity in a frequency band approximately 30 Hz was not modulated with the direction of movement and typically decreased its amplitude during the task. This suggests that high-frequency oscillations have to be divided into at least two functionally different regimes: one approximately 30 Hz and one >60 Hz. Furthermore, using multiple LFPs, we could show that LFP amplitude spectra can be used to decode movement direction, with the best performance achieved by the combination of different frequency ranges. These results suggest that using the different frequency components in the LFP is useful in improving inference of movement parameters from local field potentials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。