Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-processing dynamics.

阅读:5
作者:van Driel Joram, Ridderinkhof K Richard, Cohen Michael X
Performance errors in conflict tasks often result from inappropriate action impulses, and are thought to signal the need for increased control over the motor system. However, errors may also result from lapses in sustained attention, which may require different monitoring and adaptation mechanisms. Distinguishing between the mechanisms of adaptation is important as both error types may occur intermixed. To this end, we measured EEG of healthy human subjects while they performed three variants of the Simon task in which errors were more likely to occur due to attentional lapses, failures of motor control, or both. Behavioral results showed that subjects exhibited less conflict effects and less impulsive errors in sustained attention compared with the other Simon conditions. Time-frequency analyses of EEG data showed that the sustained attention Simon condition, compared with the motor control Simon condition, was characterized by: (1) less error-related MFC theta (4-8 Hz) power and an absence of error-related MFC-DLPFC theta phase synchronization; (2) stronger error-related suppression of parieto-occipital alpha (8-12 Hz) power and stronger parieto-occipital-frontal alpha synchronization. A control experiment, using SART (the Sustained Attention to Response Test), confirmed that adaptation after attentional lapses involved posterior alpha power suppression, in addition to inter-regional frontal theta activity. Together, these results suggest that at least two cortical mechanisms exist for performance monitoring, and that different tasks and task-settings can recruit these mechanisms in a different way. Post-error brain dynamics thus consist of heterogeneous activity from multiple neurocognitive processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。