Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models

Src 突变在 ERBB2 扩增的人类胃食管腺癌模型中诱导获得性拉帕替尼耐药性

阅读:9
作者:Yong Sang Hong, Jihun Kim, Eirini Pectasides, Cameron Fox, Seung-Woo Hong, Qiuping Ma, Gabrielle S Wong, Shouyong Peng, Matthew D Stachler, Aaron R Thorner, Paul Van Hummelen, Adam J Bass

Abstract

ERBB2-directed therapy is now a routine component of therapy for ERBB2-amplified metastatic gastroesophageal adenocarcinomas. However, there is little knowledge of the mechanisms by which these tumors develop acquired resistance to ERBB2 inhibition. To investigate this question we sought to characterize cell line models of ERBB2-amplified gastroesophageal adenocarcinoma with acquired resistance to ERBB2 inhibition. We generated lapatinib-resistant (LR) subclones from an initially lapatinib-sensitive ERBB2-amplified esophageal adenocarcinoma cell line, OE19. We subsequently performed genomic characterization and functional analyses of resistant subclones with acquired lapatinib resistance. We identified a novel, acquired SrcE527K mutation in a subset of LR OE19 subclones. Cells with this mutant allele harbour increased Src phosphorylation. Genetic and pharmacologic inhibition of Src resensitized these subclones to lapatinib. Biochemically, Src mutations could activate both the phosphatidylinositol 3-kinase and mitogen activated protein kinase pathways in the lapatinib-treated LR OE19 cells. Ectopic expression of SrcE527K mutation also was sufficient to induce lapatinib resistance in drug-naïve cells. These results indicate that pathologic activation of Src is a potential mechanism of acquired resistance to ERBB2 inhibition in ERBB2-amplified gastroesophageal cancer. Although Src mutation has not been described in primary tumor samples, we propose that the Src hyperactivation should be investigated in the settings of acquired resistance to ERBB2 inhibition in esophageal and gastric adenocarcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。