Modeling aerosol bolus inhalations in the human lung with the Multiple Path Particle Deposition model: Comparison with experimental data.

阅读:5
作者:Asgharian B, Price O, Borojeni A A T, Kuprat A P, Colby S, Singh R K, Corley R A, Darquenne C
Existing one-dimensional (1D) models of aerosol dosimetry often ignore mixing mechanisms of inhaled aerosols during their transport in the lung. This mixing or aerosol dispersion results from different physical mechanisms in different regions of the lung. It is a higher order effect, which cannot be directly captured in 1D modeling approaches, and thus is sometimes modeled as a diffusive process. In this study, we improved our recently developed alveolar mixing module incorporated in the multiple path particle dosimetry model (MPPD) to account for flow irreversibility and particle trapping in the alveolar spaces, as well as mixing occurring in the tracheobronchial region. This new version of MPPD was coupled with CFPD-based predictions of aerosol bolus dispersion in the oral airway. The model was used to predict the deposition, dispersion, and mode shift of aerosol bolus inhaled at different penetration depths within the lung for breathing patterns and particle size matching those used in a previous experimental study (Darquenne et al., 2016). Even though a quite simplified approach was used, the computations appear to describe subject-specific and test-specific experimental data reasonably well. The proposed combined dispersion-deposition model can be a useful tool for targeted drug delivery and also for exposure health risk assessment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。