For many practical applications of image sensors, how to extend the depth-of-field (DoF) is an important research topic; if successfully implemented, it could be beneficial in various applications, from photography to biometrics. In this work, we want to examine the feasibility and practicability of a well-known "extended DoF" (EDoF) technique, or "wavefront coding," by building real-time long-range iris recognition and performing large-scale iris recognition. The key to the success of long-range iris recognition includes long DoF and image quality invariance toward various object distance, which is strict and harsh enough to test the practicality and feasibility of EDoF-empowered image sensors. Besides image sensor modification, we also explored the possibility of varying enrollment/testing pairs. With 512 iris images from 32 Asian people as the database, 400-mm focal length and F/6.3 optics over 3 m working distance, our results prove that a sophisticated coding design scheme plus homogeneous enrollment/testing setups can effectively overcome the blurring caused by phase modulation and omit Wiener-based restoration. In our experiments, which are based on 3328 iris images in total, the EDoF factor can achieve a result 3.71 times better than the original system without a loss of recognition accuracy.
Test of the Practicality and Feasibility of EDoF-Empowered Image Sensors for Long-Range Biometrics.
阅读:8
作者:Hsieh Sheng-Hsun, Li Yung-Hui, Tien Chung-Hao
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2016 | 起止号: | 2016 Nov 25; 16(12):1994 |
| doi: | 10.3390/s16121994 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
