Machine Learning-Augmented Triage for Sepsis: Real-Time ICU Mortality Prediction Using SHAP-Explained Meta-Ensemble Models.

阅读:4
作者:Yilmaz Başer Hülya, Evran Turan, Cifci Mehmet Akif
Background/Objectives: Optimization algorithms are acknowledged to be critical in various fields and dynamical systems since they provide facilitation in identifying and retrieving the most possible solutions concerning complex problems besides improving efficiency, cutting down on costs, and boosting performance. Metaheuristic optimization algorithms, on the other hand, are inspired by natural phenomena, providing significant benefits related to the applicable solutions for complex optimization problems. Considering that complex optimization problems emerge across various disciplines, their successful applications are possible to be observed in tasks of classification and feature selection tasks, including diagnostic processes of certain health problems based on bio-inspiration. Sepsis continues to pose a significant threat to patient survival, particularly among individuals admitted to intensive care units from emergency departments. Traditional scoring systems, including qSOFA, SIRS, and NEWS, often fall short of delivering the precision necessary for timely and effective clinical decision-making. Methods: In this study, we introduce a novel, interpretable machine learning framework designed to predict in-hospital mortality in sepsis patients upon intensive care unit admission. Utilizing a retrospective dataset from a tertiary university hospital encompassing patient records from January 2019 to June 2024, we extracted comprehensive clinical and laboratory features. To address class imbalance and missing data, we employed the Synthetic Minority Oversampling Technique and systematic imputation methods, respectively. Our hybrid modeling approach integrates ensemble-based ML algorithms with deep learning architectures, optimized through the Red Piranha Optimization algorithm for feature selection and hyperparameter tuning. The proposed model was validated through internal cross-validation and external testing on the MIMIC-III dataset as well. Results: The proposed model demonstrates superior predictive performance over conventional scoring systems, achieving an area under the receiver operating characteristic curve of 0.96, a Brier score of 0.118, and a recall of 81. Conclusions: These results underscore the potential of AI-driven tools to enhance clinical decision-making processes in sepsis management, enabling early interventions and potentially reducing mortality rates.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。