Enhancement of Protein-Protein Interactions by Destabilizing Mutations Revealed by HDX-MS.

阅读:3
作者:Hamuro Yoshitomo, Armstrong Anthony, Branson Jeffrey, Wu Sheng-Jiun, Huang Richard Y-C, Jacobs Steven
Enhancing protein-protein interactions is a key therapeutic strategy to ensure effective protein function in terms of pharmacokinetics and pharmacodynamics and can be accomplished with methods like directed evolution or rationale design. Previously, two papers suggested the possible enhancement of protein-protein binding affinity via destabilizing mutations. This paper reviews the results of the previous literature and adds new data to show the generality of the strategy that destabilizing the unbound protein without significantly changing the free energy of the complex can enhance protein-protein interactions for therapeutic benefit. The first example presented is that of a variant of human growth hormone (hGHv) containing 15 mutations that improve the binding to the hGH binding protein (hGHbp) by 400-fold while retaining full biological activity. The second example is that of the YTE mutations (M252Y/S354T/T256E) in the Fc region of a monoclonal antibody (mAb). The YTE mutations improve the binding of the mAb to FcRn at pH 6.0 10-fold, resulting in elongated serum half-life of the mAb. In both cases, (i) chemical titration or differential scanning calorimetry (DSC) showed the mutations destabilize the unbound mutant proteins, (ii) isothermal titration calorimetry (ITC) showed extremely favorable enthalpy (ΔH) and unfavorable entropy (ΔS) upon binding to their respective target molecule compared with the wildtype, and (iii) hydrogen/deuterium exchange-mass spectrometry (HDX-MS) revealed that these mutations increase the free energy of unbound mutant protein without significantly affecting the free energy of the bound state, resulting in an enhancement to the binding affinities. The third example presented is that of the JAWA mutations (T437R/K248E) also located in the Fc region of a mAb. The JAWA mutations facilitate antibody multimerization upon binding to cell surface antigens, allowing for enhanced agonism and effector functions. Both DSC and HDX-MS showed that the JAWA mutations destabilize the unbound Fc, although the complex was not characterized due to weak binding. Enhancement of protein-protein interactions through incorporation of mutations that increase the free energy of a protein's unbound state represents an alternative route to decreasing the protein-protein complex free energy through optimization of the binding interface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。