The cleanliness of lubricating oil plays a key role in determining the operational health of mechanical systems, serving as a critical metric that delineates the extent of equipment wear. In this study, we present a magnetic-core-type planar coil particle detection sensor. The detection accuracy and detection limit are improved by optimizing the magnetic field inside the sensor. The optimization of the magnetic field is achieved through the finite element simulation analysis of the coil and the magnetic core. First, the finite element simulation software COMSOL 6.0 is used to model the sensor in three dimensions (3D). Then, we study the distribution of the magnetic field under different coil radii, core conductivity levels, and other parameters. We obtain the sensor structure after optimizing the magnetic field. The sensor is made using experimental methods, and the iron particles and copper particles are detected. The results show that the lower limit of detection of iron particles can reach 46 μm, and the lower limit of detection of copper particles can reach 110 μm.
Optimization of Parameters and Comparison of Detection Signals for Planar Coil Particle Detection Sensors with Different Core Materials.
阅读:3
作者:Gu Changzhi, Liu Chao, Liu Bo, Zhang Wenbo, Bai Chenzhao, Wang Chenyong, Sun Yuqing, Zhang Hongpeng
| 期刊: | Micromachines | 影响因子: | 3.000 |
| 时间: | 2024 | 起止号: | 2024 Dec 20; 15(12):1520 |
| doi: | 10.3390/mi15121520 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
