Long-term potentiation (LTP) in the hippocampus enhances the ability of a stimulus to produce cell firing, not only by increasing the strength of the EPSPs, but also by increasing the efficiency of the input/output (I/O) function of pyramidal neurons. This means that EPSPs of a given size more easily elicit spikes after LTP, a process known as EPSP-spike (E-S) potentiation. In contrast to LTP, it is not known whether the synaptic strengthening produced by paired-pulse facilitation (PPF) also results in changes in the I/O function. We have addressed this question by examining E-S curves from rat hippocampal area CA1 in response to both PPF and LTP. We describe a novel form of I/O modulation in which PPF produces E-S depression; that is, the E-S curve is shifted to the right, indicating a decreased ability of EPSPs to elicit action potentials. Consistent with the notion that E-S potentiation observed with LTP is caused by long-term increases in the excitatory-inhibitory ratio, we show that PPF-induced E-S depression relies on short-term decreases in this ratio. These results indicate that different forms of synaptic plasticity that produce the same degree of EPSP potentiation can result in dramatically different effects on cell firing, because of the dynamic changes in the excitatory-inhibitory balance within local circuits.
Differential effects of short- and long-term potentiation on cell firing in the CA1 region of the hippocampus.
阅读:4
作者:Marder Carrie P, Buonomano Dean V
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2003 | 起止号: | 2003 Jan 1; 23(1):112-21 |
| doi: | 10.1523/JNEUROSCI.23-01-00112.2003 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
