This study characterizes Lightning Mapping Array performance for networks that participated in the Deep Convective Clouds and Chemistry field program using new Monte Carlo and curvature matrix model simulations. These open-source simulation tools are readily adapted to real-time operations or detailed studies of performance. Each simulation accounted for receiver threshold and location, as well as a reference distribution of source powers and flash sizes based on thunderstorm observations and the mechanics of station triggering. Source and flash detection efficiency were combined with solution bias and variability to predict flash area distortion at long ranges. Location errors and detection efficiency were highly dependent on the station configuration and thresholds, especially at longer ranges, such that performance varied more than expected across different networks and with azimuth within networks. Error characteristics matched prior studies, which led to an increase in flash distortion with range. Predicted flash detection efficiency exceeded 95% within 100 km of all networks.
Lightning Mapping Array flash detection performance with variable receiver thresholds.
阅读:5
作者:Chmielewski Vanna C, Bruning Eric C
| 期刊: | Journal of Geophysical Research-Atmospheres | 影响因子: | 3.400 |
| 时间: | 2016 | 起止号: | 2016 Jul 27; 121(14):8600-8614 |
| doi: | 10.1002/2016JD025159 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
