Deciphering the Contribution of Oriens-Lacunosum/Moleculare (OLM) Cells to Intrinsic θ Rhythms Using Biophysical Local Field Potential (LFP) Models.

阅读:5
作者:Chatzikalymniou Alexandra P, Skinner Frances K
Oscillations in local field potentials (LFPs) are prevalent and contribute to brain function. An understanding of the cellular correlates and pathways affecting LFPs is needed, but many overlapping pathways in vivo make this difficult to achieve. A prevalent LFP rhythm in the hippocampus associated with memory processing and spatial navigation is the θ (3-12 Hz) oscillation. θ rhythms emerge intrinsically in an in vitro whole hippocampus preparation and this reduced preparation makes it possible to assess the contribution of different cell types to LFP generation. We focus on oriens-lacunosum/moleculare (OLM) cells as a major class of interneurons in the hippocampus. OLM cells can influence pyramidal (PYR) cells through two distinct pathways: by direct inhibition of PYR cell distal dendrites, and by indirect disinhibition of PYR cell proximal dendrites. We use previous inhibitory network models and build biophysical LFP models using volume conductor theory. We examine the effect of OLM cells to ongoing intrinsic LFP θ rhythms by directly comparing our model LFP features with experiment. We find that OLM cell inputs regulate the robustness of LFP responses without affecting their average power and that this robust response depends on coactivation of distal inhibition and basal excitation. We use our models to estimate the spatial extent of the region generating LFP θ rhythms, leading us to predict that about 22,000 PYR cells participate in intrinsic θ generation. Besides obtaining an understanding of OLM cell contributions to intrinsic LFP θ rhythms, our work can help decipher cellular correlates of in vivo LFPs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。