BACKGROUND AND AIMS: High frequency electrosurgery has a key role in the broadening application of liver surgery. Its molecular signature, i.e. the metabolites evolving from electrocauterization which may inhibit hepatic wound healing, have not been systematically studied. METHODS: Human liver samples were thus obtained during surgery before and after electrosurgical dissection and subjected to a two-stage metabolomic screening experiment (discovery sample: N = 18, replication sample: N = 20) using gas chromatography/mass spectrometry. RESULTS: In a set of 208 chemically defined metabolites, electrosurgical dissection lead to a distinct metabolic signature resulting in a separation in the first two dimensions of a principal components analysis. Six metabolites including glycolic acid, azelaic acid, 2-n-pentylfuran, dihydroactinidiolide, 2-butenal and n-pentanal were consistently increased after electrosurgery meeting the discovery (p<2.0 Ã 10(-4)) and the replication thresholds (p<3.5 Ã 10(-3)). Azelaic acid, a lipid peroxidation product from the fragmentation of abundant sn-2 linoleoyl residues, was most abundant and increased 8.1-fold after electrosurgical liver dissection (preplication = 1.6 Ã 10(-4)). The corresponding phospholipid hexadecyl azelaoyl glycerophosphocholine inhibited wound healing and tissue remodelling in scratch- and proliferation assays of hepatic stellate cells and cholangiocytes, and caused apoptosis dose-dependently in vitro, which may explain in part the tissue damage due to electrosurgery. CONCLUSION: Hepatic electrosurgery generates a metabolic signature with characteristic lipid peroxidation products. Among these, azelaic acid shows a dose-dependent toxicity in liver cells and inhibits wound healing. These observations potentially pave the way for pharmacological intervention prior liver surgery to modify the metabolic response and prevent postoperative complications.
Metabolic signature of electrosurgical liver dissection.
阅读:8
作者:von Schönfels Witigo, von Kampen Oliver, Patsenker Eleonora, Stickel Felix, Schniewind Bodo, Hinz Sebastian, Ahrens Markus, Balschun Katharina, Egberts Jan-Hendrik, Richter Klaus, Landrock Andreas, Sipos Bence, Will Olga, Huebbe Patrizia, Schreiber Stefan, Nothnagel Michael, Röcken Christoph, Rimbach Gerald, Becker Thomas, Hampe Jochen, Schafmayer Clemens
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2013 | 起止号: | 2013 Sep 13; 8(9):e72022 |
| doi: | 10.1371/journal.pone.0072022 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
