Immobilization of Silver Nanoparticles with Defensive Gum of Moringa oleifera for Antibacterial Efficacy Against Resistant Bacterial Species from Human Infections.

阅读:4
作者:Ali Liaqat, Ahmad Nisar, Uddin Muhammad Nazir, Abdel-Maksoud Mostafa A, Fazal Hina, Fatima Sabiha, El-Tayeb Mohamed A, Kiani Bushra Hafeez, Khan Wajid, Rahat Murad Ali, Ali Mohammad, Khan Yaqub, Rauf Kamran, Khan Salman, Ullah Sami, Ahmad Tanveer, Salam Afshan, Ahmad Sajjad
Background: The worldwide misuse of antibiotics is one of the main factors in microbial resistance that is a serious threat worldwide. Alternative strategies are needed to overcome this issue. Objectives: In this study, a novel strategy was adopted to suppress the growth of resistant pathogens through immobilization of silver nanoparticles (AgNPs) in gum of Moringa oleifera. Methods: The AgNPs were prepared from the leaves of Moringa oleifera and subsequently characterized through UV-spectrophotometry, FTIR, SEM, and XRD. The differential ratios of characterized AgNPs were immobilized with gum of M. oleifera and investigated for antimicrobial potential against highly resistant pathogens. Results: The immobilized AgNPs displayed promising activities against highly resistant B. subtilis (23.6 mm; 50 µL:200 µL), E. coli (19.3 mm; 75 µL:200 µL), K. pneumoniae (22 mm; 200 µL:200 µL), P. mirabilis (16.3 mm; 100 µL:200 µL), P. aeruginosa (22 mm; 175 µL:200 µL), and S. typhi (19.3; 25 µL:200 µL) than either AgNPs alone or gum. The immobilized AgNPs released positive sliver ions that easily attached to negatively charged bacterial cells. After attachment and permeation to bacterial cells, the immobilized NPs alter the cell membrane permeability, protein/enzymes denaturation, oxidative stress (ROS), damage DNA, and change the gene expression level. It has been mechanistically considered that the immobilized AgNPs can kill bacteria by damaging their cell membranes, dephosphorylating tyrosine residues during their signal transduction pathways, inducing cell apoptosis, rupturing organelles, and inhibiting cell division, which finally leads to cell death. Conclusions: This study proposes a potential alternative drug for curing various infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。