The osmotic dehydration (OD) of celery root in sugar beet molasses was studied at three temperatures (20, 35, and 50 °C) and three immersion periods (1, 3, and 5 h) in order to examine the changes in antioxidant potential and phenolic profile of celery root throughout the process. The antioxidant capacity (AOC) of dehydrated samples was evaluated by spectrophotometric and polarographic assays, the total phenolic content by the Folin-Ciocalteu method, and the individual phenolic compounds by HPLC-DAD. As a result of OD in molasses, the AOC and phenols content in samples increased proportionally to the augmentation of temperature and the immersion time. Vanillic acid, syringic acid, and catechin were detected in dehydrated samples as a result of transfer from molasses. Compared to fresh celery root, the content of identified phenols in osmodehydrated samples was improved from 1.5 to 6.2 times. Strong correlations between applied assays were obtained, except for the DPPH. Based on the correlation analysis chlorogenic acid, gallic acid, chrysin, catechin, and kaempferol showed the greatest contribution to the overall AOC of osmodehydrated celery root. Molasses, an agro-industrial waste from sugar production, could be valorized as a valuable osmotic solution.
Celery Root Phenols Content, Antioxidant Capacities and Their Correlations after Osmotic Dehydration in Molasses.
阅读:4
作者:NiÄetin Milica, Pezo Lato, Pergal Marija, LonÄar Biljana, FilipoviÄ Vladimir, KneževiÄ Violeta, Demir Hande, FilipoviÄ Jelena, ManojloviÄ Dragan
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2022 | 起止号: | 2022 Jun 30; 11(13):1945 |
| doi: | 10.3390/foods11131945 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
