Reducing the fat content in emulsions can give additional nutritional health benefits. Hence, developing low-fat oil-in-water emulsions, fortified with healthy microalgae providing advantageous properties, is an interesting topic. In this study, the addition of Arthrospira platensis (Spirulina), Chlorella vulgaris (Chlorella), and Dunaliella salina (Dunaliella) microalgae biomass on the physicochemical properties of low-fat oil-in-water emulsion formulations were evaluated. The rheological properties of food emulsions were measured in terms of the viscoelastic, flow behaviour, and textural properties, with all properties studied during 60Â days. pH values of all the emulsions ranged between 3.0 and 3.7 and agreed to the Codex Alimentarius Commission. Moreover, their rheological behaviour may be classified as weak gel-like, a distinguishing characteristic of low-fat emulsion products. Substantial differences in rheological properties were observed between the fortified microalgae emulsions over the storage time (60Â days). However, incorporating Spirulina or Dunaliella gave emulsions with stable texture, viscoelastic, and rheological properties. The prepared emulsions displayed good colour stability for Chlorella and Dunaliella. Overall, the fortified microalgae low-fat emulsions are expected to provide a blueprint for the design of low-fat mayonnaise-like food emulsions.
Microalgae fortification of low-fat oil-in-water food emulsions: an evaluation of the physicochemical and rheological properties.
阅读:11
作者:Uribe-Wandurraga Zaida Natalia, MartÃnez-Sánchez Irene, Savall Carmen, GarcÃa-Segovia Purificación, MartÃnez-Monzó Javier
| 期刊: | Journal of Food Science and Technology-Mysore | 影响因子: | 3.300 |
| 时间: | 2021 | 起止号: | 2021 Oct;58(10):3701-3711 |
| doi: | 10.1007/s13197-020-04828-1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
