Parameter identification of Johnson-Cook constitutive model based on genetic algorithm and simulation analysis for 304 stainless steel.

阅读:7
作者:Jiang Xinyang, Ding Jinfu, Wang Chengwu, Shiju E, Hong Ling, Yao Weifeng, Wang Huadong, Zhou Chongqiu, Yu Wei
Addressing the significant discrepancy between actual experimental cutting force and its predicted values derived from traditional constitutive model parameter identification methods, a reverse identification research of the Johnson-Cook (J-C) constitutive model for 304 stainless steel was conducted via genetic algorithm. Considering actual cutting zone and the influence of feed motion on the rake (flank) angle, an unequal division shear zone model was established to implement the theoretical calculation for shear zone stress. Through cutting experiments, the spindle speed was negatively correlated with the cutting force at first, and then became positively correlated; The empirical formula (EXP model) for turning force was corrected, revealing that the EXP model was unable to provide optimal predicted values for cutting force. The influence of the J-C constitutive parameter C on the cutting morphology was firstly investigated through simulation analysis, and determined an appropriate value for C, then obtained the precise values for the other four constitutive parameters by genetic algorithm. Moreover, the simulated values of cutting force in JC1 model (obtained from the Split Hopkinson Pressure Bar test) and JCM model (the improved model using genetic algorithm) were obtained by three-dimensional (3-D) simulation via FEM software. The results indicated that, the maximum error between actual experimental cutting force and its simulated values (by JCM model) was 14.8%, with an average error of 6.38%. These results outperformed the JC1 and EXP models, suggesting that the JCM model identified via genetic algorithm was more reliable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。