This study investigated the impact of whey protein isolate (WPI) addition on the dry heat modification of corn (CS) and wheat starch (WS). Starches were treated under dry heating conditions at 130 °C for 2 and 4 h. The physicochemical and structural properties of the modified starches, such as color, particle size, thermal behavior (DSC), crystalline structure (XRD), and surface morphology (SEM), were analyzed. The results show that adding WPI significantly altered the gelatinization properties, surface morphology, and crystalline structure of both starches. DSC indicated that the gelatinization properties of starch/WPI mixtures varied, with corn starch showing a decreased gelatinization temperature and increased enthalpy, whereas wheat starch exhibited a more complex response, likely due to different structural changes. The XRD and FTIR results revealed WPI-enhanced crystallinity and structural changes, highlighting WPI-induced aggregation. Wheat starch, in particular, exhibited stronger interactions with WPI than corn starch, as evidenced by the accumulation patterns in the SEM images. The oil-binding capacity of native starches increased with dry heating and WPI addition, suggesting an improved hydrophobicity of starch granules. Dry heating and WPI addition significantly altered starch properties, highlighting the potential of thermal modulation to enhance starch-protein systems for targeted food applications.
Alteration of the Morphological and Physicochemical Characteristics of Corn and Wheat Starch via Dry Heating with Whey Protein Isolates.
阅读:4
作者:Adal Eda, Aktar Tugba, Keskin Ãavdar Hasene
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2024 | 起止号: | 2024 Nov 20; 13(22):3701 |
| doi: | 10.3390/foods13223701 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
