Non-Invasive Real-Time Monitoring of Bacterial Activity by Non-Contact Impedance Spectroscopy for Off-the-Shelf Labware.

阅读:11
作者:Thirstrup Carsten, Nielsen Ole Stender, Lassen Mikael, Andersen Thomas Emil, Aslan Hüsnü
Monitoring bacterial activity is essential for numerous scientific and industrial applications. However, current benchmark measurements, i.e., optical density (OD), exhibit a limited dynamic range and require transparent or translucent media. Conventional impedance spectroscopy involves direct electrode contact with the bacterial medium or biofilm, potentially perturbing the sample environment and compromising measurement fidelity. Moreover, many real-time methods rely on costly, specialized labware that limits scalability and versatility. Here, we introduce a non-contact impedance spectroscopy (NCIS) technique with customizable electrodes for off-the-shelf labware and show that the data collected from a KCl solution series agree well with the simplest electrolytic conductivity cell model solution, demonstrating the accuracy and simplicity of NCIS. As an example of bacterial activity monitoring, NCIS was performed in glass laboratory bottles and 24-well plates in which Staphylococcus epidermidis and Escherichia coli cultures were inoculated into Brain Heart Infusion media, maintained at 37 °C. Comparative OD measurements acquired intermittently from the same media exhibited a strong correlation between NCIS and OD data, confirming reliability and reproducibility. The bacterial culture was verified by Raman spectroscopy assisted by machine learning. NCIS eliminates the risks of contamination and sample alteration, minimizing costs and operational complexity and providing a scalable, versatile solution for biological and chemical research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。