Non-Invasive Real-Time Monitoring of Bacterial Activity by Non-Contact Impedance Spectroscopy for Off-the-Shelf Labware.

阅读:3
作者:Thirstrup Carsten, Nielsen Ole Stender, Lassen Mikael, Andersen Thomas Emil, Aslan Hüsnü
Monitoring bacterial activity is essential for numerous scientific and industrial applications. However, current benchmark measurements, i.e., optical density (OD), exhibit a limited dynamic range and require transparent or translucent media. Conventional impedance spectroscopy involves direct electrode contact with the bacterial medium or biofilm, potentially perturbing the sample environment and compromising measurement fidelity. Moreover, many real-time methods rely on costly, specialized labware that limits scalability and versatility. Here, we introduce a non-contact impedance spectroscopy (NCIS) technique with customizable electrodes for off-the-shelf labware and show that the data collected from a KCl solution series agree well with the simplest electrolytic conductivity cell model solution, demonstrating the accuracy and simplicity of NCIS. As an example of bacterial activity monitoring, NCIS was performed in glass laboratory bottles and 24-well plates in which Staphylococcus epidermidis and Escherichia coli cultures were inoculated into Brain Heart Infusion media, maintained at 37 °C. Comparative OD measurements acquired intermittently from the same media exhibited a strong correlation between NCIS and OD data, confirming reliability and reproducibility. The bacterial culture was verified by Raman spectroscopy assisted by machine learning. NCIS eliminates the risks of contamination and sample alteration, minimizing costs and operational complexity and providing a scalable, versatile solution for biological and chemical research.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。