Cooking-Induced Oxidation and Structural Changes in Chicken Protein: Their Impact on In Vitro Gastrointestinal Digestion and Intestinal Flora Fermentation Characteristics.

阅读:4
作者:Lv Guanhua, Wang Hengpeng, Wei Xiaoou, Lu Minmin, Yang Wenhao, Aalim Halah, Capanoglu Esra, Zou Xiaobo, Battino Maurizio, Zhang Di
Meat digestion and intestinal flora fermentation characteristics are closely related to human dietary health. The present study investigated the effect of different cooking treatments, including boiling, roasting, microwaving, stir-frying, and deep-frying, on the oxidation of chicken protein as well as its structural and digestion characteristics. The results revealed that deep-fried and roasted chicken exhibited a relatively higher degree of protein oxidation, while that of boiled chicken was the lowest (p < 0.05). Both stir-frying and deep-frying led to a greater conversion of the α-helix structure of chicken protein into a β-sheet structure and resulted in lower protein gastrointestinal digestibility (p < 0.05), whereas roasted chicken exhibited moderate digestibility. Further, the impact of residual undigested chicken protein on the intestinal flora fermentation was assessed. During the fermentation process, roasted chicken generated the highest number of new intestinal flora species (49 species), exhibiting the highest Chao 1 index (356.20) and a relatively low Simpson index (0.88). Its relative abundance of Fusobacterium was the highest (33.33%), while the total production of six short-chain fatty acids was the lowest (50.76 mM). Although stir-fried and deep-fried chicken exhibited lower digestibility, their adverse impact on intestinal flora was not greater than that of roasted chicken. Therefore, roasting is the least recommended method for the daily cooking of chicken. The present work provides practical advice for choosing cooking methods for chicken in daily life, which is useful for human dietary health.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。