Asymptotic estimates of SARS-CoV-2 infection counts and their sensitivity to stochastic perturbation.

阅读:5
作者:Faranda Davide, Castillo Isaac Pérez, Hulme Oliver, Jezequel Aglaé, Lamb Jeroen S W, Sato Yuzuru, Thompson Erica L
Despite the importance of having robust estimates of the time-asymptotic total number of infections, early estimates of COVID-19 show enormous fluctuations. Using COVID-19 data from different countries, we show that predictions are extremely sensitive to the reporting protocol and crucially depend on the last available data point before the maximum number of daily infections is reached. We propose a physical explanation for this sensitivity, using a susceptible-exposed-infected-recovered model, where the parameters are stochastically perturbed to simulate the difficulty in detecting patients, different confinement measures taken by different countries, as well as changes in the virus characteristics. Our results suggest that there are physical and statistical reasons to assign low confidence to statistical and dynamical fits, despite their apparently good statistical scores. These considerations are general and can be applied to other epidemics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。