The effective and safe detection of illicit materials, explosives in particular, is currently of growing importance taking into account the geopolitical situation and increasing risk of a terrorist attack. The commonly used methods of detection are based predominantly on metal detectors and georadars, which show only the shapes of the possible dangerous objects and do not allow for exact identification and risk assessment. A supplementary or even alternative method may be based on neutron activation analysis, which provides the possibility of a stoichiometric analysis of the suspected object and its non-invasive identification. One such sensor is developed by the SABAT collaboration, with its primary application being underwater threat detection. In this article, we present performance studies of this sensor, integrated with a mobile robot, in terms of the minimal detectable quantity of commonly used explosives in different environmental conditions. The paper describes the functionality of the used platform considering electronics, sensors, onboard computing power, and communication system to carry out manual operation and remote control. Robotics solutions based on modularized structures allow the extension of sensors and effectors that can significantly improve the safety of personnel as well as work efficiency, productivity, and flexibility.
Performance of the SABAT Neutron-Based Explosives Detector Integrated with an Unmanned Ground Vehicle: A Simulation Study.
阅读:4
作者:Silarski MichaÅ, Nowakowski Marek
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Dec 19; 22(24):9996 |
| doi: | 10.3390/s22249996 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
