Mannich Base Derived from Lawsone Inhibits PKM2 and Induces Neoplastic Cell Death.

阅读:3
作者:Rubini-Dias Lucas, Fernandes Tácio V A, de Souza Michele P, Hottz Déborah, Arruda Afonso T, Borges Amanda de A, Ouverney Gabriel, da Silva Fernando de C, Forezi Luana da S M, Limaverde-Sousa Gabriel, Robbs Bruno K
Background/Objectives: Pyruvate kinase M2, a central regulator of cancer cell metabolism, has garnered significant attention as a promising target for disrupting the metabolic adaptability of tumor cells. This study explores the potential of the Mannich base derived from lawsone (MB-6a) to interfere with PKM2 enzymatic activity both in vitro and in silico. Methods: The antiproliferative potential of MB-6a was tested using MTT assay in various cell lines, including SCC-9, Hep-G2, HT-29, B16-F10, and normal human gingival fibroblast (HGF). The inhibition of PKM2 mediated by MB-6a was assessed using an LDH-coupled assay and by measuring ATP production. Docking studies and molecular dynamics calculations were performed using Autodock 4 and GROMACS, respectively, on the tetrameric PKM2 crystallographic structure. Results: The Mannich base 6a demonstrated selective cytotoxicity against all cancer cell lines tested without affecting cell migration, with the highest selectivity index (SI) of 4.63 in SCC-9, followed by B16-F10 (SI = 3.9), Hep-G2 (SI = 3.4), and HT-29 (SI = 2.03). The compound effectively inhibited PKM2 glycolytic activity, leading to a reduction of ATP production both in the enzymatic reaction and in cells treated with this naphthoquinone derivative. MB-6a showed favorable binding to PKM2 in the ATP-bound monomers through docking studies (PDB ID: 4FXF; binding affinity scores ranging from -6.94 to -9.79 kcal/mol) and MD simulations, revealing binding affinities stabilized by key interactions including hydrogen bonds, halogen bonds, and hydrophobic contacts. Conclusions: The findings suggest that MB-6a exerts its antiproliferative activity by disrupting cell glucose metabolism, consequently reducing ATP production and triggering energetic collapse in cancer cells. This study highlights the potential of MB-6a as a lead compound targeting PKM2 and warrants further investigation into its mechanism of action and potential clinical applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。