Increasing importance in the field of artificial intelligence has led to huge progress in remote sensing. Deep learning approaches have made tremendous progress in hyperspectral image (HSI) classification. However, the complexity in classifying the HSI data using a common convolutional neural network is still a challenge. Further, the network architecture becomes more complex when different spatial-spectral feature information is extracted. Usually, CNN has a large number of trainable parameters, which increases the computational complexity of HSI data. In this paper, an optimized squeeze-excitation AdaBound dense network (SE-AB-DenseNet) is designed to emphasize the significant spatial-spectral features of HSI data. The dense network is combined with the AdaBound and squeeze-excitation modules to give lower computation costs and better classification performance. The AdaBound optimizer gives the proposed model the ability to improve its stability and enhance its classification accuracy by approximately 2%. Additionally, the cutout regularization technique is used for HSI spatial-spectral classification to overcome the problem of overfitting. The experiments were carried out on two commonly used hyperspectral datasets (Indian Pines and Salinas). The experiment results on the datasets show a competitive classification accuracy when compared with state-of-the-art methods with limited training samples. From the SE-AB-DenseNet with the cutout model, the overall accuracies for the Indian Pines and Salinas datasets were observed to be 99.37 and 99.78, respectively.
Robust Spatial-Spectral Squeeze-Excitation AdaBound Dense Network (SE-AB-Densenet) for Hyperspectral Image Classification.
阅读:3
作者:Munishamaiaha Kavitha, Rajagopal Gayathri, Venkatesan Dhilip Kumar, Arif Muhammad, Vicoveanu Dragos, Chiuchisan Iuliana, Izdrui Diana, Geman Oana
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Apr 22; 22(9):3229 |
| doi: | 10.3390/s22093229 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
