The traditional carrier-phase differential detection technology mainly relies on the spatial processing method, which uses antenna arrays or moving antennas to detect spoofing signals, but it cannot be applied to static single-antenna receivers. Aiming at this problem, this paper proposes a rotating single-antenna spoofing signal detection method based on the improved probabilistic neural network (IPNN). When the receiver antenna rotates at a constant speed, the carrier-phase double difference of the real signal will change with the incident angle of the satellite. According to this feature, the classification and detection of spoofing signals can be realized. Firstly, the rotating single-antenna receiver collects carrier-phase values and performs double-difference processing. Then, we construct an IPNN model, whose smoothing factor can be adaptively adjusted according to the type of failure mode. Finally, we use the IPNN model to realize the classification and processing of the carrier-phase double-difference observations and obtain the deception detection results. In addition, in order to reflect that the method has a certain practical value, we simulate the spoofing scenario of satellite signals and effectively identify abnormal satellite signals according to the detection results of the inter-satellite differential combination. Actual experiments indicate that the detection accuracy of the proposed method for spoofing signals reaches 98.84%, which is significantly better than the classical probabilistic neural network (PNN) and back-propagation neural network (BPNN), and the method can be implemented in fixed base station receivers for the real-time detection of forwarding spoofing.
Rotating Single-Antenna Spoofing Signal Detection Method Based on IPNN.
阅读:5
作者:Chang Haowei, Pang Chunlei, Zhang Liang, Guo Zehui
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Sep 21; 22(19):7141 |
| doi: | 10.3390/s22197141 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
