As distributed sensing technologies evolve, the collection of time series data is becoming increasingly decentralized, which introduces serious challenges for both model training and data privacy protection. In response to this trend, federated time series anomaly detection enables collaborative analysis across distributed sensing nodes without exposing raw data. However, federated anomaly detection experiences issues with unstable training and poor generalization due to client heterogeneity and the limited expressiveness of single-path detection methods. To address these challenges, this study proposes FedSW-TSAD, a federated time series anomaly detection method based on the Sobolev-Wasserstein GAN (SWGAN). It leverages the Sobolev-Wasserstein constraint to stabilize adversarial training and combines discriminative signals from both reconstruction and prediction modules, thereby improving robustness against diverse anomalies. In addition, FedSW-TSAD adopts a differential privacy mechanism with L2-norm-constrained noise injection, ensuring privacy in model updates under the federated setting. The experimental results determined using four real-world sensor datasets demonstrate that FedSW-TSAD outperforms existing methods by an average of 14.37% in the F1-score while also enhancing gradient privacy under the differential privacy mechanism. This highlights the practical value of FedSW-TSAD for privacy-preserving anomaly detection in sensor-based monitoring systems such as industrial IoT, remote diagnostics, and predictive maintenance.
FedSW-TSAD: SWGAN-Based Federated Time Series Anomaly Detection.
阅读:3
作者:Zhang Xiuxian, Zhao Hongwei, Zhang Weishan, Cao Shaohua, Sun Haoyun, Zhang Baoyu
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jun 27; 25(13):4014 |
| doi: | 10.3390/s25134014 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
