Application of Additive Manufacturing and Deep Learning in Exercise State Discrimination.

阅读:3
作者:Zhao Zhilong, Yang Jiaxi, Liu Jiahao, Soong Shijie, Wang Yiming, Zhang Juan
With the rapid development of sports technology, smart wearable devices play a crucial role in athletic training and health management. Sports fatigue is a key factor affecting athletic performance. Using smart wearable devices to detect the onset of fatigue can optimize training, prevent excessive fatigue and resultant injury, and increase efficiency and safety. However, current wearable sensing devices are often uncomfortable and imprecise. Furthermore, stable methods for fatigue detection are not yet established. To address these challenges, this paper introduces 3D printing and deep learning to design a smart wearable sensing device to detect different states of sports fatigue. First, to meet the need for comfort and improved accuracy in data collection, we utilized reverse engineering and additive manufacturing technologies. Second, we designed a prototype based on the long short-term memory (LSTM) neural network to analyze the collected bioelectrical signals for the identification of sports fatigue states and the extraction of related indicators. Finally, we conducted a large number of numerical experiments. The results demonstrated that our prototype and related equipment could collect signals and mine information as well as identify indicators associated with sports fatigue in the signals, thereby improving accuracy in the classification of fatigue states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。