Evaluation of cholesterol transformation abilities and probiotic properties of Bacteroides dorei YGMCC0564.

阅读:2
作者:He Zhili, Wang Tinghui, Zhang Shichang, Shi Kuojiang, Wang Fan, Li Yanzhao, Lin Chanqing, Chen Jianguo
Hypercholesterolemia, a risk factor for cardiovascular disease (CVD), often requires therapeutic agents with varying degrees of side effects. This has created a need for safe and natural alternatives such as medications or functional foods that can improve lipid metabolism and reduce cholesterol levels. In recent years, Next-generation probiotics (NGPs) have recently emerged as a potential solution, offering distinct mechanisms compared to traditional probiotics. Among the NGPs, Bacteroides, a dominant bacterial genus in the human gut, has gained significant attention due to its prevalence, ability to break down plant polysaccharides, and production of short-chain fatty acids (SCFAs). Recent evidence has demonstrated that Bacteroides effectively reduces cholesterol levels, prevents obesity, and lowers the risk of CVD. However, research on Bacteroides is currently limited to a few species, leaving rooms for exploration of the beneficial functions of different species in this genus. In this study, we isolated 66 Bacteroides strains, including 9 distinct species, from healthy adults' fecal samples. By comparing their ability to assimilate cholesterol, we found that the transformation ability was not specific to any particular species. Notably, Bacteroides dorei YGMCC0564 revealed superior cholesterol-lowering capabilities and bile salt hydrolase (BSH) activity in vitro, surpassing that of Lactobacillus GG (LGG). YGMCC0564 exhibited favorable probiotic characteristics, including high survival rate in vitro simulation of gastrointestinal digestion, excellent adhesion ability, susceptibility to antibiotics, absence of hemolysis or virulence genes, and substantial production of SCFAs. The strain also demonstrated remarkable bile salt deconjugation activities and upregulation of the BT_416 gene associated with cholesterol, providing insights into a possible molecular mechanism underlying its cholesterol-reducing activity. These findings establish YGMCC0564 as a promising NPG candidate for improving cardiovascular health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。