Co-Delivery of a High Dose of Amphotericin B and Itraconazole by Means of a Dry Powder Inhaler Formulation for the Treatment of Severe Fungal Pulmonary Infections.

阅读:2
作者:Celi Salomé S, Fernández-García Raquel, Afonso-Urich Andreina I, Ballesteros M Paloma, Healy Anne Marie, Serrano Dolores R
Over the past few decades, there has been a considerable rise in the incidence and prevalence of pulmonary fungal infections, creating a global health problem due to a lack of antifungal therapies specifically designed for pulmonary administration. Amphotericin B (AmB) and itraconazole (ITR) are two antifungal drugs with different mechanisms of action that have been widely employed in antimycotic therapy. In this work, microparticles containing a high dose of AmB and ITR (20, 30, and 40% total antifungal drug loading) were engineered for use in dry powder inhalers (DPIs) with an aim to improve the pharmacological effect, thereby enhancing the existing off-label choices for pulmonary administration. A Design of Experiment (DoE) approach was employed to prepare DPI formulations consisting of AmB-ITR encapsulated within γ-cyclodextrin (γ-CD) alongside functional excipients, such as mannitol and leucine. In vitro deposition indicated a favourable lung deposition pattern characterised by an upper ITR distribution (mass median aerodynamic diameter (MMAD) ~ 6 µm) along with a lower AmB deposition (MMAD ~ 3 µm). This offers significant advantages for treating fungal infections, not only in the lung parenchyma but also in the upper respiratory tract, considering that Aspergillus spp. can cause upper and lower airway disorders. The in vitro deposition profile of ITR and larger MMAD was related to the higher unencapsulated crystalline fraction of the drug, which may be altered using a higher concentration of γ-CD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。