The present study aims to perform a comparative analysis of the chemical composition and thermal behavior of two distinct milk types, namely animal and plant-based. The thermal analysis revealed the presence of the following classes of compounds: hydrocarbons, heterocycles, aldehydes, ketones, amines and alcohols. All types of milk contain saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs), though the relative proportions of these vary depending on the specific milk type. Animal milk powders contain SFAs, including palmitic, stearic, and myristic acids, as well as moderate amounts of MUFAs, such as oleic and palmitoleic acids. They also contain lower PUFAs, including linoleic and alpha-linolenic acids. In contrast, plant-based milk powders, particularly soy milk powder, are rich in both linoleic and alpha-linolenic acids. Plant-based milk typically exhibits lower levels of SFAs and higher levels of MUFAs and PUFAs when compared to milk of animal origin. In conclusion, the fatty acid profiles of animal and plant-based milk powders reflect the different nutritional attributes and health implications associated with each. Thermal behavior analysis offers insights into the stability and potential flavor changes that may occur during processing and storage. The comparative analysis highlights significant differences in the chemical composition and thermal behavior of animal and plant-based milk powders.
Comparison of the Thermal Behavior and Chemical Composition of Milk Powders of Animal and Plant Origin.
阅读:5
作者:Dippong Thomas, Muresan Laura Elena, Senila Lacrimioara
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Jan 24; 14(3):389 |
| doi: | 10.3390/foods14030389 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
