The biological importance of microtubules in mitosis, as well as in interphase, makes them an interesting target for the development of anticancer agents. Small molecules such as benzo[b]thiophenes are attractive as inhibitors of tubulin polymerization. Thus, a new class of compounds that incorporated the structural motif of the 2-(3',4',5'-trimethoxybenzoyl)-3-aryl/arylamino benzo[b]thiophene molecular skeleton, with electron-donating (Me, OMe, SMe or OEt) or electron-withdrawing (F and Cl) substituents on the B-ring, was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization and cell cycle effects. The most promising compound in this series was 2-(3',4',5'-trimethoxybenzoyl)-3-(4'-ethoxyphenyl)-benzo[b]thiophene (4e), which significantly inhibited cancer cell growth at submicromolar concentrations, especially against HeLa and Jurkat cells, and interacted with tubulin. As determined by flow cytometric analysis, 4e caused G2/M phase arrest and apoptosis in a time- and concentration-dependent manner. The block in G2/M was correlated with increased expression of cyclin B1 and phosphorylation of cdc25c. Moreover, 4e perturbed mitochondrial membrane potential and caused activation of caspase-3 and cleavage of poly(ADP-rybose)polymerase (PARP), events that are involved in 4e-induced apoptosis.
Synthesis and biological evaluation of 2-(3',4',5'-trimethoxybenzoyl)-3-aryl/arylaminobenzo[b]thiophene derivatives as a novel class of antiproliferative agents.
阅读:3
作者:Romagnoli Romeo, Baraldi Pier Giovanni, Cara Carlota Lopez, Hamel Ernest, Basso Giuseppe, Bortolozzi Roberta, Viola Giampietro
| 期刊: | European Journal of Medicinal Chemistry | 影响因子: | 5.900 |
| 时间: | 2010 | 起止号: | 2010 Dec;45(12):5781-91 |
| doi: | 10.1016/j.ejmech.2010.09.038 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
