Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.

阅读:3
作者:Lin Ken Y, Huang Dan, Kraus W Lee
ADP-ribosylation is a covalent posttranslational modification of proteins that is catalyzed by various types of ADP-ribosyltransferase (ART) enzymes, including members of the poly(ADP-ribose) polymerase (PARP) family. ADP-ribose (ADPR) modifications can occur as mono(ADP-ribosyl)ation, oligo(ADP-ribosyl)ation, or poly(ADP-ribosyl)ation, depending on the particular ART enzyme catalyzing the reaction, as well as the specific reaction conditions. Understanding the biology of ADP-ribosylation requires facile and robust means of generating and detecting the modification in all of its forms. Here we describe how to generate protein-linked mono(ADP-ribose), oligo(ADP-ribose), and poly(ADP-ribose) (MAR, OAR, and PAR, respectively) in vitro as an automodification of PARPs 1 or 3. First, epitope-tagged PARP-1 (a PARP polyenzyme) and PARP-3 (a PARP monoenzyme) are expressed individually in insect cells using baculovirus expression vectors, and purified using immunoaffinity chromatography. Second, the purified recombinant PARPs are incubated individually in the presence of different concentrations of NAD(+) (as a donor of ADPR groups) and sheared DNA (to activate their catalytic activities) resulting in various forms of auto-ADP-ribosylation. Third, the products are confirmed using ADPR detection reagents that can distinguish among MAR, OAR, and PAR. Finally, if desired, the OAR and PAR can be deproteinized. The protein-linked and free MAR, OAR, and PAR generated in these reactions can be used as standards, substrates, or binding partners in a variety of ADPR-related assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。