Drug repositioning represents a cost- and time-efficient strategy for drug development. Artificial intelligence-based algorithms have been applied in drug repositioning by predicting drug-target interactions in an efficient and high throughput manner. Here, we present a workflow of in silico drug repositioning for host-based antivirals using specially defined targets, a refined list of drug candidates, and an easily implemented computational framework. The workflow described here can also apply to more general purposes, especially when given a user-defined druggable target gene set. For complete details on the use and execution of this protocol, please refer to Li et al. (2021).
An in silico drug repositioning workflow for host-based antivirals.
阅读:8
作者:Li Zexu, Yao Yingjia, Cheng Xiaolong, Li Wei, Fei Teng
| 期刊: | STAR Protocols | 影响因子: | 1.300 |
| 时间: | 2021 | 起止号: | 2021 Jul 7; 2(3):100653 |
| doi: | 10.1016/j.xpro.2021.100653 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
