A powerful investigative tool in biology is to consider not a single mathematical model but a collection of models designed to explore different working hypotheses and select the best model in that collection. In these lecture notes, the usual workflow of the use of mathematical models to investigate a biological problem is described and the use of a collection of model is motivated. Models depend on parameters that must be estimated using observations; and when a collection of models is considered, the best model has then to be identified based on available observations. Hence, model calibration and selection, which are intrinsically linked, are essential steps of the workflow. Here, some procedures for model calibration and a criterion, the Akaike Information Criterion, of model selection based on experimental data are described. Rough derivation, practical technique of computation and use of this criterion are detailed.
A primer on model selection using the Akaike Information Criterion.
阅读:7
作者:Portet, Stéphanie
| 期刊: | Infectious Disease Modelling | 影响因子: | 2.500 |
| 时间: | 2020 | 起止号: | 2020 Jan 7; 5:111-128 |
| doi: | 10.1016/j.idm.2019.12.010 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
