Orthogonal transcriptional modulation and gene editing using multiple CRISPR-Cas systems.

利用多个 CRISPR-Cas 系统进行正交转录调控和基因编辑

阅读:4
作者:Broksø Amalie Dyrelund, Bendixen Louise, Fammé Simon, Mikkelsen Kasper, Jensen Trine Ilsø, Bak Rasmus O
CRISPR-Cas-based transcriptional activation (CRISPRa) and interference (CRISPRi) enable transient programmable gene regulation by recruitment or fusion of transcriptional regulators to nuclease-deficient Cas (dCas). Here, we expand on the emerging area of transcriptional engineering and RNA delivery by benchmarking combinations of RNA-delivered dCas and transcriptional modulators. We utilize dCas9 from Staphylococcus aureus and Streptococcus pyogenes for orthogonal transcriptional modulation to upregulate one set of genes while downregulating another. We also establish trimodal genetic engineering by combining orthogonal transcriptional regulation with gene knockout by Cas12a (Acidaminococcus; AsCas12a) ribonucleoprotein delivery. To simplify trimodal engineering, we explore optimal parameters for implementing truncated single guide RNAs (sgRNAs) to make use of SpCas9 for knockout and CRISPRa. We find the Cas9 protein/sgRNA ratio to be crucial for avoiding sgRNA cross-complexation and for balancing knockout and activation efficiencies. We demonstrate high efficiencies of trimodal genetic engineering in primary human T cells while preserving basic T cell health and functionality. This study highlights the versatility and potential of complex genetic engineering using multiple CRISPR-Cas systems in a simple one-step process yielding transient transcriptome modulation and permanent DNA changes. We believe such elaborate engineering can be implemented in regenerative medicine and therapies to facilitate more sophisticated treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。